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Image Analysis with 
Convolutional Neural Nets  

(CNNs, also called convnets)
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Note: output image is smaller than input image
If you want output size to be same as input, pad 0’s to input
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Convolution
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Very commonly used for:
• Blurring an image

• Finding edges
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(this example finds horizontal edges)
Images from: http://aishack.in/tutorials/image-convolution-examples/



Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with 
each filter
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activation (e.g., ReLU)filters are actually unknown 
and are learned!



Convolution Layer
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Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 
and k 3x3xd kernels

Input image

Stack output 
images into a 
single “output 
feature map”

dimensions: 
height, 
width, 

depth d (# channels)

dimensions: 
height-2, 
width-2, 

k
technical detail: there’s 

also a bias vector



Pooling

• Aggregate local information

• Produces a smaller image 
(each resulting pixel captures some “global” information)
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What numbers were involved in computing this 1?
In this example: 1 pixel in max pooling output 

captures information from 16 input pixels!
Example: applying max pooling again results in a 

single pixel that captures info from entire input image!



Basic Building Block of CNN’s

Images from: http://aishack.in/tutorials/image-convolution-examples/

conv2d layer 
with ReLu activation 

and k kernels

Input image
max pooling 

(applied to each 
image in stack)

stack of images

output stack of 
smaller images



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image
dense layer with 

10 neurons, 
softmax activation

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

dense layer 
with 512 

neurons, ReLU 
activation

1
Pr(digit 6)log

Learning this neural net 
means learning parameters 

of both dense layers!



Handwritten Digit Recognition

28x28 image dense, 
softmax

Training label: 6

Loss/“error” error

dense, 
ReLU

conv2d, 
ReLU

max 
pooling

2d



Handwritten Digit Recognition

28x28 image dense, 
softmax

Training label: 6

Loss

error

dense, 
ReLU

conv2d, 
ReLU

max 
pooling

2d

conv2d, 
ReLU

max 
pooling

2d

extract low-level visual 
features & aggregate

extract higher-level visual 
features & aggregate

non-vision-specific 
classification neural net



CNN Demo



CNN’s
• Learn convolution filters for extracting simple features

• Max pooling aggregates local information

• Can then repeat the above two layers to learn features from 
increasingly higher-level representations

• Convolution filters are shift-invariant

• In terms of invariance to an object shifting within the input 
image, this is roughly achieved by pooling



Recurrent Neural Networks  
(RNNs)



RNNs
What we’ve seen so far are “feedforward” NNs



RNNs
What we’ve seen so far are “feedforward” NNs

What if we had a video?
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RNNs

LSTM layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether 
it has positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 

representations that are 
semantically meaningful

In keras, use 
Embedding layer

Em
be

dd
in

g

Cl
as

sifi
er

Classification with > 2 classes: 
dense layer, softmax activation

Classification with 2 classes: 
dense layer with 1 neuron, 

sigmoid activation



RNNs

Demo



RNNs

• Neatly handles time series in which there is some sort of 
global structure, so memory helps

• If time series doesn’t actually have global structure, 
performance gain from using RNNs could be little 
compared to using 1D CNNs

• An RNN layer should be chained together with other layers 
that learn a semantically meaningful interpretation from data 
(e.g., CNNs for images, word embeddings like word2vec/
GloVe for text)



Learning a Deep Net



Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss/“error” of the neural network L(w)

tangent line

The skier should move rightward (positive direction)
The derivative at the skier’s position is negative

In general: the skier should move in 
opposite direction of derivative

In higher dimensions, this is called gradient descent

initial guess of 
good parameter 

setting

The skier wants to get to the lowest point
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Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss/“error” of the neural network L(w)

Victory!

Local minimum Better 
solution

In general: not obvious what error landscape looks like! 
➔ we wouldn’t know there’s a better solution beyond the hill

In practice: local minimum often good enough
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Learning a Deep Net
2D example of gradient descent

Slide by Phillip Isola



Remark: In practice, deep nets often 
have > millions of parameters, so very 

high-dimensional gradient descent



Handwritten Digit Recognition

28x28 image

Training label: 6

Loss

error

x f1 f2 f3 f4 f5 f6 L
�All parameters:

L(f6(f5(f4(f3(f2(f1(x)))))))Error: ∂L(f6(f5(f4(f3(f2(f1(x)))))))
∂θGradient:

Automatic differentiation is a crucial component to learning deep nets!
Careful derivative chain rule calculation: back-propagation algorithm



Dealing with Small Datasets

• Data augmentation

• Generate perturbed versions of your training data  
(e.g., for images, add mirrored versions of images, rotated 
versions, etc) to get larger training dataset

• Fine tune

• Is there an existing pre-trained neural net on a similar 
task? If so, reuse pre-trained model and modify the neural 
net slightly and train (using existing weights as initialization)



Lots More to Deep Learning
• Extremely important bit we haven’t covered: visualizing what 

the deep net learned

• Some other cool ideas:

• Self-supervised learning: remove parts of the data and 
predict the missing parts from the other parts (this is the 
key idea for word2vec!) — no training labels required!

• Generative adversarial networks: 2 deep nets, one that 
learns a generative process for data, and another that tries 
to classify whether a data point is generated (synthetic) or 
real

• Deep reinforcement learning: train AI to play Go and other 
games, also important in robotics



The Future of Deep Learning

• Deep learning currently is still limited in what it can do — the 
layers do simple operations and have to be differentiable

• Still lots of engineering and expert knowledge used to design 
some of the best systems (e.g., AlphaGo)

• How do we make deep nets that generalize better?

• How to properly do lifelong learning?

• How do we get away with using less expert knowledge?
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Provided by 
data scientist

Most of this course

Data

Inference CriticismModel

Question
Provided by 
practitioner

Insights
Communicate 

answer to question 
(and usually why)

in regular 
communication

Don’t forget about the 
practitioner & original 

question!



95-865 Some Parting Thoughts
• Remember to visualize different steps of your data analysis 

pipeline — very helpful when you’re still debugging

• Often times in practice there may be little or no training labels
• Is it possible to predict certain parts of the data from other 

parts? (Some times, we can set up a self-supervised task)
• If we have to manual label, what’s the best way to do it?

• Usually there are tons of models that you could try

• It’s good practice to come up with quantitative metrics 
that make sense for the problem you’re trying to solve, 
and for which you can evaluate models using a prediction 
task on held-out data

Thanks for being a beta tester!


